

Confidentiality Level	PU - Publish	TC ID / Revision	00332375/C	
Document Status	Document Released	Document No.	N/A	
OBS code	87			
PBS code	E.E4.ELMA.ION.7.1			
Project branch	Engineering & Scientific	c documents (E&S)		
Document Type	Specification (SP)			
[RSD product category A] Real-time Digital Oscilloscopes				
	TP2	22_028		
N/A				
	Positior	ו	Name	
Responsible F	Research Assistant		Stanislav Stanček	
Prepared by	Research Assistant, Engineer		Stanislav Stanček, Francesco Schillaci	

RSS TC ID/revision	RSS - Date of Creation	RSS - Date of Last Modification	Systems Engineer
023979/A.001	03.06.2022	03.06.2022	A. Kuzmenko
023979/A.002	10.06.2022	10.06.2022	A. Kuzmenko

Reviewed By				
Name (Reviewer) Position		Date	Signature	
Daniele Margarone	Head of department of Ion Acceleration and Application of High Energy Particles			
Luboš Nims	Electrical Engineering Group leader			
Jiří Kubricht Lawyer		NOTICE (RSD product category A)		
Roman Kuřátko	Head of Department of Building Infrastructure and IT			
Veronika Olšovcová Group Leader of Safety				
Viktor Fedosov Group Leader of Quality and Planning				

Approved by			
Name (Approver) Position		Date	Signature
Daniele Margarone	Head of department of Ion Acceleration and Application of High Energy Particles	10.06.2022	<u>via TC</u>

Revision History / Change Log				
Change No.	Made by	Date	Change description, Pages, Chapters	TC rev.
1	S. Stanček, F. Schillaci	02.06.2022	RSD draft creation	А
2	F. Schillaci, A. Kuzmenko	06.06.2022	RSD update; version for review	В
3	F. Schillaci, A. Kuzmenko	10.06.2022	RSD update; final version	С

1. Introduction	4
 1.1. Purpose 1.2. Scope 1.3. Terms, Definitions and Abbreviations 1.4. References to standards 	4 4 4 4
 2. Functional, Performance and Design requirements 2.1. General technical requirements 	5 5
 Delivery requirements	7 7 8
5.1. General Quality Requirements5.2. Specific Quality requirements5.1. Acceptance	8 8 9

1. Introduction

1.1. Purpose

This Requirements Specification Document (RSD) lists the technical requirements and constraints on the product being purchased for department 87 of the ELI Beamlines project.

1.2. Scope

The RSD contains all of the technical requirements: functional, performance and delivery, safety and quality requirements for the following product *(tender code TP22_028)*: **Real-***time Digital Oscilloscopes (further "Oscilloscopes")*.

The Oscilloscopes are considered to be the standalone technology and will be placed at the ELI Beamlines facility in the E4 hall. These Oscilloscopes are registered in the PBS software under the following PBS code: *E.E4.ELMA.ION.7.1*.

This product is a product **Category A** according to the ELI Beamlines RSD categories of products. The Category A is an Off-the-shelf Product without the necessity of modifications and the necessity to be subjected to a verification program (review of design, inspection and testing) for ELI applications by the actual project specifications. All verification activities performed by a supplier shall be executed in accordance with the supplier's plan of outgoing inspection and tests. Internal Acceptance Procedure of the product Category A shall be established and applied before the product implementation (operation phase).

1.3. Terms, Definitions and Abbreviations

For the purpose of this document, the following abbreviated terms are applied:

Abbreviation	Meaning
AC	Alternating Current
СА	Contracting Authority (Institute of Physics CAS)
CPU	Central Processing Unit
DC	Direct Current
ELI	Extreme Light Infrastructure
GPIB	General Purpose Interface Bus
pts	points
RSD	Requirements Specification Document
USB	Universal Serial Bus
WXGA	Wide eXtended Graphics Array

1.4. References to standards

If this document includes references to standards or standardized/ standardizing technical documents the CA allows/permits also another equivalent solution to be offered.

2. Functional, Performance and Design requirements

2.1. General technical requirements

REQ-034435/A

Each of the Oscilloscopes shall provide real-time signal registration of at least 4 analogue channels.

REQ-034436/A

The Oscilloscopes shall be provided with a WXGA Color Display, at least 12.1" Touch Screen and a Multi-tab Display Option with at least 4 channels simultaneous display of real-time signal.

REQ-034627/A

The operating system of the Oscilloscopes shall be fully compatible with CA's operating and control systems.

NOTE: The Microsoft Windows $\ensuremath{\mathbb{R}}$ 10 is used by the CA to interface with devices and the acquisition system.

REQ-034437/A

The Oscilloscopes shall have a power supply compatible with the input voltage in minimal ranges of 100-240 V AC $\pm 10\%$ at 50/60 Hz $\pm 5\%$; 110-120 V AC $\pm 10\%$ at 400 Hz $\pm 5\%$ (Automatic AC Voltage Selection).

REQ-034438/A

Each of the Oscilloscopes shall have the following maximum power consumption:

- Nominal Power Consumption 415 W / 415 VA
- Max. Power Consumption 500 W / 500 VA (with all PC peripherals and active probes connected to 4 channels).

REQ-034439/A

The performance parameters of the Oscilloscopes shall correspond to the requirements given in table 1 below.

No	Parameters	Minimum Requirements
1	Analog Bandwidth (max)	4 GHz
2	Analog Bandwidth @ 50 Ω (-3 dB)	4 GHz (≥ 5 mV/div)
3	Analog Bandwidth @ 1 M Ω (-3 dB)	500 MHz (typical)
4	Rise Time (10-90%, 50 Ω)	100 ps (typical)
5	Rise Time (20-80%, 50 Ω)	75 ps (typical)
6	Input Channels	4
7	Vertical Resolution	8 bits
8	Vertical Noise Floor (1 mV/div)	165 uVms
9	Vertical Noise Floor (2 mV/div)	165 uVms
10	Vertical Noise Floor (5 mV/div)	368 uVrms
11	Vertical Noise Floor (10 mV/div)	420 uVrms
12	Vertical Noise Floor (20 mV/div)	657 uVrms
13	Vertical Noise Floor (50 mV/div)	1.21 mVrms
14	Vertical Noise Floor (100 mV/div)	2.25 mVrms

No	Parameters	Minimum Requirements
15	Vertical Noise Floor (200 mV/div)	6.35 mVrms
16	Vertical Noise Floor (500 mV/div)	11.57 mVrms
17	Vertical Noise Floor (1 V/div)	21.74 mVrms
18	Sensitivity @ 50 Ω	1 mV-1 V/div, fully variable
19	Sensitivity @ 1 MΩ	1 mV-10 V/div, fully variable
	DC Vertical Gain Accuracy (Gain	
20	Component of DC Accuracy)	\pm (1%) F.S, offset at 0 V
21	DC Vertical Offset Accuracy	±(1.5% of offset setting +1% of full scale + 1 mV) (test limit)
	Channel-Channel Isolation (for any	DC-2.5 GHz: 40 dB (>100:1),
22	two ProBus input channels, same	2.5 GHz to rated BW: 31.6 dB (>30:1)
	v/div settings, typical)	
		$BWL \leq 1 GHz$:
		±1.6 V @ 1 mV - 4.95 mV/div
		±4 V @ 5 mV - 9.9 mV/div
22	Offeet Barres @ FO O	±8 V @ 10 mV - 19.8 mV/div
23	Offset Range @ 50 \2	±10 V @ 20 mV - 1V/div
		BWL > 1 GHz:
		±1.4V @ 5 mV - 100 mV/div
		±10V @ 102 mV - 1 V/div
		±1.6 V @ 1 mV - 4.95 mV/div
	Offset Range @ 1 MΩ	±4 V @ 5 mV - 9.9 mV/div
24		±8 V @ 10 mV - 19.8 mV/div
24		±16 V @ 20 mV - 100 mV/div
		±80 V @ 102 mV - 1.0 V/div
		±160 V @ 1.02 V - 10 V/div
25	Maximum Input Voltage @ 50 Ω	5 V RMS ± 10 V peak
26	Maximum Input Voltage @ 1 M Ω	400 V max. (DC + peak AC < 10 kHz)
27	Sample Rate (Single-shot)	20 GS/s on 4 Ch,
27		40 GS/s on 2 Ch
28	Sample Rate (Repetitive)	200 GS/s for repetitive signals (20 ps/div to 10
		ns/div)
29	Memory Length (4 Ch / 2 Ch / 1Ch)	64M / 128M / 128M
30	Number of Segments	15000
31	Intersegment Time	1 µs
32	Input Coupling @ 1 MΩ	AC, DC, GND
33	Input Coupling @ 50 Ω	DC, GND
24	CDI Dassmark	2553 score or better according to CPU Mark on the
54		www.cpubenchmark.net
35	Processor Memory	16 GB standard
36	Enhanced Resolution	From 8.5 to 11 bits vertical resolution
27	Ethorpot Port	Supports 10/100/1000BaseT Ethernet interface
31		(RJ45 port)

No	Parameters	Minimum Requirements	
38	USB Host Ports	4 side USB 3.1 Gen1 ports and 1 front USB 2.0 port	
		support Windows compatible devices	
39	USB Device Port	1 port - USBTMC over USB 3.1 Gen1	
40	GPIB Port (optional)	Supports IEEE - 488.2 (External)	
41	Remote Control	Via Windows Automation, or via Remote Desktop	
42	Network Communication Standard	Compliant with VXI-11 or VICP, LXI Class C (v1.2)	
43	Local language user interface	English	
	(language preferences)		

 Table 1: Performance parameters of the Oscilloscopes.

3. Delivery requirements

REQ-034440/A

The transportation to the ELI Beamlines facility in Dolní Břežany of the Oscilloscopes shall be conducted by the Supplier.

NOTE: The bid price will be considered by the CA as the final price, including transportation costs.

4. Safety Requirements

REQ-034441/A

The Supplier shall supply a Declaration of Conformity for each product type if the appropriate legislation determines the Supplier's obligation to have a Declaration of Conformity for the purposes of a Device sale in the Czech Republic. In such a case, the Declaration of Conformity shall comply with:

- Act No. 90/2016 Coll., as amended
- Act No. 22/1997 Coll., as amended

• The equivalent legal regulation of another EU member state so that the conditions for the sale of the product in the Czech Republic are met, and/or

• the relevant EU/EC regulation.

NOTE: The compliance with these obligations will be demonstrated by the (EU) Declaration of conformity, other relevant documents and the CE marking if required by the relevant regulations. If a delivered product is not required to assess conformity according to specific legislation, the supplier declares, in written form, by concluding the contract that the product complies with the general safety requirement of EU Directive 2001/95/EC on general product safety and that the Supplier duly complies their obligations under this Regulation.

5. Quality Requirements

5.1. General Quality Requirements

REQ-034442/A

The Supplier shall provide the Product User Manual as part of the delivered Device. The Manual shall include the instructions and descriptions regarding the following procedures:

- transport, handling, storage and cleaning;
- installation and calibration (see REQ-034444/A);
- safe operation and maintenance procedures;
- user manual for the software /communication protocols.

NOTE: The manual can be supplied in hardcopy or PDF formats.

REQ-034443/A

The Supplier shall provide information on outgoing check of the Product. At least this information shall comprise a report about the execution of outgoing check and fulfilment of the technical requirements defined by the product RSD, and completeness of the product.

NOTE: Alternatively, the Supplier might provide the CA with the information detailed enough to prove meeting all requirements stipulated herein (e.g. catalogue/technical datasheets, product manuals or other similar documentation).

REQ-034444/A

The Supplier shall supply a Calibration Certificate or Test protocol, which shall establish:

- the relation between quantity values with measurement uncertainties provided by measurement standards and the corresponding indications with associated measurement uncertainties;
- the relation for obtaining a measurement result from an indication (if required).

NOTE: The Supplier shall define the calibration interval for the Oscilloscopes.

REQ-034445/A

The Supplier shall establish and maintain a non-conformance control system compatible with ČSN EN ISO 9001 (equivalent to EN ISO 9001).

5.2. Specific Quality requirements

REQ-034446/A

In case of the Oscilloscope repair by the Supplier within the validity of the warranty, the Supplier shall recalibrate and verify the Oscilloscope once the repair is completed. The results of this process shall be provided to the CA.

5.1. Acceptance

Acceptance will be carried out by the CA upon delivery and final verification of the Oscilloscopes and documentation supporting the verification (see REQ-034442/A, REQ-034443/A and REQ-034444/A). The basis for acceptance will be the report about the execution of outgoing check and compliance with technical requirements (see REQ-034443/A).

In case of a successful acceptance phase, the CA will provide the Supplier signed acceptance protocol. In case of an unsuccessful acceptance stage, the CA will provide the Supplier Nonconformity Report (NCR) and a process in accordance with REQ-034445/A will be applied.

REQ-034447/A

The Acceptance phase shall demonstrate the following:

- Final Products have been successfully verified by the Supplier;
- All detected nonconformities have been solved in accordance with REQ-034445/A;
- Final Products are free of fabrication errors and are ready for the intended operational use.

